secretflow.ml.nn.fl#
secretflow.ml.nn.fl.compress#
Functions:
|
|
|
secretflow.ml.nn.fl.fl_model#
FedModel
Classes:
|
- class secretflow.ml.nn.fl.fl_model.FLModel(server=None, device_list: List[PYU] = [], model: Union[TorchModel, Callable[[], tensorflow.keras.Model]] = None, aggregator=None, strategy='fed_avg_w', consensus_num=1, backend='tensorflow', random_seed=None, **kwargs)[源代码]#
基类:
object
Methods:
__init__
([server, device_list, model, ...])Interface for horizontal federated learning .
init_workers
(model, device_list, strategy, ...)fit
(x, y[, batch_size, batch_sampling_rate, ...])Horizontal federated training interface
predict
(x[, batch_size, label_decoder, ...])Horizontal federated offline prediction interface
evaluate
(x[, y, batch_size, sample_weight, ...])Horizontal federated offline evaluation interface
save_model
(model_path[, is_test, saved_model])Horizontal federated save model interface
load_model
(model_path[, is_test, ...])Horizontal federated load model interface
- __init__(server=None, device_list: List[PYU] = [], model: Union[TorchModel, Callable[[], tensorflow.keras.Model]] = None, aggregator=None, strategy='fed_avg_w', consensus_num=1, backend='tensorflow', random_seed=None, **kwargs)[源代码]#
Interface for horizontal federated learning .. attribute:: server
PYU, Which PYU as a server
- device_list#
party list
- model#
model definition function
- aggregator#
Security aggregators can be selected according to the security level
- strategy#
Federated training strategy
- consensus_num#
Num parties of consensus,Some strategies require multiple parties to reach consensus,
- backend#
Engine backend, the backend needs to be consistent with the model type
- random_seed#
If specified, the initial value of the model will remain the same, which ensures reproducible
- fit(x: Union[HDataFrame, FedNdarray, Dict[PYU, str]], y: Union[HDataFrame, FedNdarray, str], batch_size: Union[int, Dict[PYU, int]] = 32, batch_sampling_rate: Optional[float] = None, epochs: int = 1, verbose: int = 1, callbacks=None, validation_data=None, shuffle=False, class_weight=None, sample_weight=None, validation_freq=1, aggregate_freq=1, label_decoder=None, max_batch_size=20000, prefetch_buffer_size=None, sampler_method='batch', random_seed=None, dp_spent_step_freq=None, audit_log_dir=None, dataset_builder: Optional[Dict[PYU, Callable]] = None) History [源代码]#
Horizontal federated training interface
- 参数:
x – feature, FedNdArray, HDataFrame or Dict {PYU: model_path}
y – label, FedNdArray, HDataFrame or str(column name of label)
batch_size – Number of samples per gradient update, int or Dict, recommend 64 or more for safety
batch_sampling_rate – Ratio of sample per batch, float
epochs – Number of epochs to train the model
verbose – 0, 1. Verbosity mode
callbacks – List of keras.callbacks.Callback instances.
validation_data – Data on which to evaluate
shuffle – whether to shuffle the training data
class_weight – Dict mapping class indices (integers) to a weight (float)
sample_weight – weights for the training samples
validation_freq – specifies how many training epochs to run before a new validation run is performed
aggregate_freq – Number of steps of aggregation
label_decoder – Only used for CSV reading, for label preprocess
max_batch_size – Max limit of batch size
prefetch_buffer_size – An int specifying the number of feature batches to prefetch for performance improvement. Only for csv reader
sampler_method – The name of sampler method
random_seed – Prg seed for shuffling
dp_spent_step_freq – specifies how many training steps to check the budget of dp
audit_log_dir – path of audit log dir, checkpoint will be save if audit_log_dir is not None
dataset_builder – Callable function about hot to build the dataset. must return (dataset, steps_per_epoch)
- 返回:
A history object. It’s history.global_history attribute is a aggregated record of training loss values and metrics, while history.local_history attribute is a record of training loss values and metrics of each party.
- predict(x: Union[HDataFrame, FedNdarray, Dict], batch_size=None, label_decoder=None, sampler_method='batch', random_seed=1234, dataset_builder: Optional[Dict[PYU, Callable]] = None) Dict[PYU, PYUObject] [源代码]#
Horizontal federated offline prediction interface
- 参数:
x – feature, FedNdArray or HDataFrame
batch_size – Number of samples per gradient update, int or Dict
label_decoder – Only used for CSV reading, for label preprocess
sampler_method – The name of sampler method
random_seed – Prg seed for shuffling
dataset_builder – Callable function about hot to build the dataset. must return (dataset, steps_per_epoch)
- 返回:
predict results, numpy.array
- evaluate(x: Union[HDataFrame, FedNdarray, Dict], y: Optional[Union[HDataFrame, FedNdarray, str]] = None, batch_size: Union[int, Dict[PYU, int]] = 32, sample_weight: Optional[Union[HDataFrame, FedNdarray]] = None, label_decoder=None, return_dict=False, sampler_method='batch', random_seed=None, dataset_builder: Optional[Dict[PYU, Callable]] = None) Tuple[Union[List[Metric], Dict[str, Metric]], Union[Dict[str, List[Metric]], Dict[str, Dict[str, Metric]]]] [源代码]#
Horizontal federated offline evaluation interface
- 参数:
x – Input data. It could be: - FedNdArray - HDataFrame - Dict {PYU: model_path}
y – Label. It could be: - FedNdArray - HDataFrame - str column name of csv
batch_size – Integer or Dict. Number of samples per batch of computation. If unspecified, batch_size will default to 32.
sample_weight – Optional Numpy array of weights for the test samples, used for weighting the loss function.
label_decoder – User define how to handle label column when use csv reader
return_dict – If True, loss and metric results are returned as a dict, with each key being the name of the metric. If False, they are returned as a list.
sampler_method – The name of sampler method.
dataset_builder – Callable function about hot to build the dataset. must return (dataset, steps_per_epoch)
- 返回:
A tuple of two objects. The first object is a aggregated record of metrics, and the second object is a record of training loss values and metrics of each party.
- save_model(model_path: Union[str, Dict[PYU, str]], is_test=False, saved_model=False)[源代码]#
Horizontal federated save model interface
- 参数:
model_path – model path, only support format like ‘a/b/c’, where c is the model name
is_test – whether is test mode
saved_model – bool Whether to save as savedmodel or torchscript format
secretflow.ml.nn.fl.strategy_dispatcher#
Classes:
Functions:
|
register new strategy |
|
strategy dispatcher |
- class secretflow.ml.nn.fl.strategy_dispatcher.Dispatcher[源代码]#
基类:
object
Methods:
__init__
()register
(name, cls)dispatch
(name, backend, *args, **kwargs)
secretflow.ml.nn.fl.utils#
Classes:
|
Functions:
|
|
|
- class secretflow.ml.nn.fl.utils.History(local_history: Dict[str, Dict[str, List[float]]] = <factory>, local_detailed_history: Dict[str, Dict[str, List[secretflow.ml.nn.metrics.Metric]]] = <factory>, global_history: Dict[str, List[float]] = <factory>, global_detailed_history: Dict[str, List[secretflow.ml.nn.metrics.Metric]] = <factory>)[源代码]#
基类:
object
Attributes:
Examples: >>> { 'alice': {'loss': [0.46011224], 'accuracy': [0.8639647]}, 'bob': {'loss': [0.46011224], 'accuracy': [0.8639647]}, }
Examples: >>> { 'alice': { 'mean': [Mean()] }, 'bob': { 'mean': [Mean()] }, }
Examples: >>> { 'loss': [0.46011224], 'accuracy': [0.8639647] }
Examples: >>> { 'loss': [Loss(name='loss')], 'precision': [Precision(name='precision')], }
Methods:
__init__
([local_history, ...])record_local_history
(party, metrics[, stage])record_global_history
(metrics[, stage])- local_history: Dict[str, Dict[str, List[float]]]#
Examples: >>> {
‘alice’: {‘loss’: [0.46011224], ‘accuracy’: [0.8639647]}, ‘bob’: {‘loss’: [0.46011224], ‘accuracy’: [0.8639647]},
}
- local_detailed_history: Dict[str, Dict[str, List[Metric]]]#
Examples: >>> {
- ‘alice’: {
‘mean’: [Mean()]
}, ‘bob’: {
‘mean’: [Mean()]
},
}
- global_history: Dict[str, List[float]]#
Examples: >>> {
‘loss’: [0.46011224], ‘accuracy’: [0.8639647]
}
- global_detailed_history: Dict[str, List[Metric]]#
Examples: >>> {
‘loss’: [Loss(name=’loss’)], ‘precision’: [Precision(name=’precision’)],
}
- __init__(local_history: ~typing.Dict[str, ~typing.Dict[str, ~typing.List[float]]] = <factory>, local_detailed_history: ~typing.Dict[str, ~typing.Dict[str, ~typing.List[~secretflow.ml.nn.metrics.Metric]]] = <factory>, global_history: ~typing.Dict[str, ~typing.List[float]] = <factory>, global_detailed_history: ~typing.Dict[str, ~typing.List[~secretflow.ml.nn.metrics.Metric]] = <factory>) None #