secretflow.ml.nn.fl.backend.tensorflow#
- secretflow.ml.nn.fl.backend.tensorflow.strategy
PYUFedAvgG
PYUFedAvgW
PYUFedAvgU
PYUFedSCR
PYUFedSTC
PYUFedProx
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_g
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_u
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_w
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_prox
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_scr
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_stc
secretflow.ml.nn.fl.backend.tensorflow.fl_base#
Classes:
|
- class secretflow.ml.nn.fl.backend.tensorflow.fl_base.BaseTFModel(builder_base: Callable[[], Model], random_seed: Optional[int] = None)[源代码]#
基类:
object
Methods:
__init__
(builder_base[, random_seed])build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
get_rows_count
(filename)set_weights
(weights)set weights of client model
set_validation_metrics
(global_metrics)evaluate
([evaluate_steps])predict
([predict_steps])init_training
(callbacks[, epochs, steps, ...])on_epoch_begin
(epoch)on_epoch_end
(epoch)train_step
(weights, cur_steps, train_steps, ...)save_model
(model_path)load_model
(model_path)- build_dataset_from_csv(csv_file_path: str, label: str, sampling_rate=None, shuffle=False, random_seed=1234, na_value='?', repeat_count=1, sample_length=0, buffer_size=None, ignore_errors=True, prefetch_buffer_size=None, stage='train', label_decoder=None)[源代码]#
build tf.data.Dataset
- 参数:
csv_file_path – Dict of csv file path
label – label column name
sampling_rate – Sampling rate of a batch
shuffle – A bool that indicates whether the input should be shuffled
random_seed – Randomization seed to use for shuffling.
na_value – Additional string to recognize as NA/NaN.
repeat_count – num of repeats
sample_length – num of sample length
buffer_size – shuffle size
ignore_errors – if True, ignores errors with CSV file parsing,
prefetch_buffer_size – An int specifying the number of feature batches to prefetch for performance improvement.
stage – the stage of the datset
label_decoder – callable function for label preprocess
- build_dataset(x: ndarray, y: Optional[ndarray] = None, s_w: Optional[ndarray] = None, sampling_rate=None, buffer_size=None, shuffle=False, random_seed=1234, repeat_count=1, sampler_method='batch', stage='train')[源代码]#
build tf.data.Dataset
- 参数:
x – feature, FedNdArray or HDataFrame
y – label, FedNdArray or HDataFrame
s_w – sample weight of this dataset
sampling_rate – Sampling rate of a batch
buffer_size – shuffle size
shuffle – A bool that indicates whether the input should be shuffled
random_seed – Prg seed for shuffling
repeat_count – num of repeats
sampler_method – method of sampler
- build_dataset_from_builder(dataset_builder: Callable, x: Union[DataFrame, str], y: Optional[ndarray] = None, s_w: Optional[ndarray] = None, repeat_count=1, stage='train')[源代码]#
build tf.data.Dataset
- 参数:
dataset_builder – Function of how to build dataset, must return dataset and step_per_epoch
x – A string representing the path to a CSV file or data folder containing the input data.
y – label, FedNdArray or HDataFrame
s_w – Default None, all samples are assumed to have equal weight.
repeat_count – An integer specifying the number of times to repeat the dataset. This is useful for increasing the effective size of the dataset.
stage – A string specifying the stage of the dataset to build. This is useful for separating training, validation, and test datasets.
- 返回:
A tensorflow dataset
secretflow.ml.nn.fl.backend.tensorflow.sampler#
Functions:
|
implementation of batch sampler |
|
implementation of possion sampler |
|
do sample data by sampler_method |
- secretflow.ml.nn.fl.backend.tensorflow.sampler.batch_sampler(x, y, s_w, sampling_rate, buffer_size, shuffle, repeat_count, random_seed)[源代码]#
implementation of batch sampler
- 参数:
x – feature, FedNdArray or HDataFrame
y – label, FedNdArray or HDataFrame
s_w – sample weight of this dataset
sampling_rate – Sampling rate of a batch
buffer_size – shuffle size
shuffle – A bool that indicates whether the input should be shuffled
repeat_count – num of repeats
random_seed – Prg seed for shuffling
- 返回:
tf.data.Dataset
- 返回类型:
data_set
- secretflow.ml.nn.fl.backend.tensorflow.sampler.possion_sampler(x, y, s_w, sampling_rate, random_seed)[源代码]#
implementation of possion sampler
- 参数:
x – feature, FedNdArray or HDataFrame
y – label, FedNdArray or HDataFrame
s_w – sample weight of this dataset
sampling_rate – Sampling rate of a batch
random_seed – Prg seed for shuffling
- 返回:
tf.data.Dataset
- 返回类型:
data_set
- secretflow.ml.nn.fl.backend.tensorflow.sampler.sampler_data(sampler_method='batch', x=None, y=None, s_w=None, sampling_rate=None, buffer_size=None, shuffle=False, repeat_count=1, random_seed=1234)[源代码]#
do sample data by sampler_method
- 参数:
x – feature, FedNdArray or HDataFrame
y – label, FedNdArray or HDataFrame
s_w – sample weight of this dataset
sampling_rate – Sampling rate of a batch
buffer_size – shuffle size
shuffle – A bool that indicates whether the input should be shuffled
repeat_count – num of repeats
random_seed – Prg seed for shuffling
- 返回:
tf.data.Dataset
- 返回类型:
data_set