secretflow.ml.nn.fl.backend.tensorflow.strategy#
Classes:
|
|
|
|
|
|
|
|
|
|
|
- secretflow.ml.nn.fl.backend.tensorflow.strategy.PYUFedAvgG[源代码]#
ActorProxy(PYUFedAvgG)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(gradients, cur_steps, ...)Accept ps model params,then do local train
wrap_local_metrics
()
- secretflow.ml.nn.fl.backend.tensorflow.strategy.PYUFedAvgW[源代码]#
ActorProxy(PYUFedAvgW)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(weights, cur_steps, train_steps, ...)Accept ps model params, then do local train
wrap_local_metrics
()
- secretflow.ml.nn.fl.backend.tensorflow.strategy.PYUFedAvgU[源代码]#
ActorProxy(PYUFedAvgU)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(updates, cur_steps, train_steps, ...)Accept ps model params, then do local train
wrap_local_metrics
()
- secretflow.ml.nn.fl.backend.tensorflow.strategy.PYUFedSCR[源代码]#
ActorProxy(PYUFedSCR)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(updates, cur_steps, train_steps, ...)Accept ps model params,then do local train
wrap_local_metrics
()
- secretflow.ml.nn.fl.backend.tensorflow.strategy.PYUFedSTC[源代码]#
ActorProxy(PYUFedSTC)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(updates, cur_steps, train_steps, ...)Accept ps model params,then do local train
wrap_local_metrics
()
- secretflow.ml.nn.fl.backend.tensorflow.strategy.PYUFedProx[源代码]#
ActorProxy(PYUFedProx)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(weights, cur_steps, train_steps, ...)Accept ps model params,then do local train
w_norm
(w1, w2)wrap_local_metrics
()
secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_g#
Classes:
|
FedAvgG: An implementation of FedAvg, where the clients upload their accumulated gradients during the federated round to the server for averaging and update their local models using the aggregated gradients from the server in each federated round. |
|
- class secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_g.FedAvgG(builder_base: Callable[[], Model], random_seed: Optional[int] = None)[源代码]#
基类:
BaseTFModel
FedAvgG: An implementation of FedAvg, where the clients upload their accumulated gradients during the federated round to the server for averaging and update their local models using the aggregated gradients from the server in each federated round.
Methods:
train_step
(gradients, cur_steps, ...)Accept ps model params,then do local train
- train_step(gradients: ndarray, cur_steps: int, train_steps: int, **kwargs) Tuple[ndarray, int] [源代码]#
Accept ps model params,then do local train
- 参数:
gradients – global gradients from params server
cur_steps – current train step
train_steps – local training steps
kwargs – strategy-specific parameters
- 返回:
Parameters after local training
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_g.PYUFedAvgG[源代码]#
ActorProxy(PYUFedAvgG)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(gradients, cur_steps, ...)Accept ps model params,then do local train
wrap_local_metrics
()
secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_u#
Classes:
|
FedAvgU: An implementation of FedAvg, where the clients upload their model updates to the server for averaging and update their local models with the aggregated updates from the server in each federated round. |
|
- class secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_u.FedAvgU(builder_base: Callable[[], Model], random_seed: Optional[int] = None)[源代码]#
基类:
BaseTFModel
FedAvgU: An implementation of FedAvg, where the clients upload their model updates to the server for averaging and update their local models with the aggregated updates from the server in each federated round. This paradigm acts the same as FedAvgG when using the SGD optimizer, but may not for other optimizers (e.g., Adam).
Methods:
train_step
(updates, cur_steps, train_steps, ...)Accept ps model params, then do local train
- train_step(updates: ndarray, cur_steps: int, train_steps: int, **kwargs) Tuple[ndarray, int] [源代码]#
Accept ps model params, then do local train
- 参数:
updates – global updates from params server
cur_steps – current train step
train_steps – local training steps
kwargs – strategy-specific parameters
- 返回:
Parameters after local training
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_u.PYUFedAvgU[源代码]#
ActorProxy(PYUFedAvgU)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(updates, cur_steps, train_steps, ...)Accept ps model params, then do local train
wrap_local_metrics
()
secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_w#
Classes:
|
FedAvgW: A naive implementation of FedAvg, where the clients upload their trained model weights to the server for averaging and update their local models via the aggregated weights from the server in each federated round. |
|
- class secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_w.FedAvgW(builder_base: Callable[[], Model], random_seed: Optional[int] = None)[源代码]#
基类:
BaseTFModel
FedAvgW: A naive implementation of FedAvg, where the clients upload their trained model weights to the server for averaging and update their local models via the aggregated weights from the server in each federated round.
Methods:
train_step
(weights, cur_steps, train_steps, ...)Accept ps model params, then do local train
- train_step(weights: ndarray, cur_steps: int, train_steps: int, **kwargs) Tuple[ndarray, int] [源代码]#
Accept ps model params, then do local train
- 参数:
updates – global updates from params server
cur_steps – current train step
train_steps – local training steps
kwargs – strategy-specific parameters
- 返回:
Parameters after local training
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_avg_w.PYUFedAvgW[源代码]#
ActorProxy(PYUFedAvgW)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(weights, cur_steps, train_steps, ...)Accept ps model params, then do local train
wrap_local_metrics
()
secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_prox#
Classes:
|
FedfProx: An FL optimization strategy that addresses the challenge of heterogeneity on data (non-IID) and devices, which adds a proximal term to the local objective function of each client, for better convergence. |
|
- class secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_prox.FedProx(builder_base: Callable[[], Model], random_seed: Optional[int] = None)[源代码]#
基类:
BaseTFModel
FedfProx: An FL optimization strategy that addresses the challenge of heterogeneity on data (non-IID) and devices, which adds a proximal term to the local objective function of each client, for better convergence. In the feature, this strategy will allow every client to train locally with a different Gamma-inexactness, for higher training efficiency.
Methods:
w_norm
(w1, w2)train_step
(weights, cur_steps, train_steps, ...)Accept ps model params,then do local train
- train_step(weights: ndarray, cur_steps: int, train_steps: int, **kwargs) Tuple[ndarray, int] [源代码]#
Accept ps model params,then do local train
- 参数:
updates – global updates from params server
cur_steps – current train step
train_steps – local training steps
kwargs – strategy-specific parameters
- 返回:
Parameters after local training
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_prox.PYUFedProx[源代码]#
ActorProxy(PYUFedProx)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(weights, cur_steps, train_steps, ...)Accept ps model params,then do local train
w_norm
(w1, w2)wrap_local_metrics
()
secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_scr#
Classes:
|
FedSCR: A structure-wise aggregation method to identify and remove redundant updates, it aggregates parameter updates over a particular structure (e.g., filters and channels). |
|
- class secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_scr.FedSCR(builder_base: Callable[[], Model], random_seed=None)[源代码]#
基类:
BaseTFModel
FedSCR: A structure-wise aggregation method to identify and remove redundant updates, it aggregates parameter updates over a particular structure (e.g., filters and channels). If the sum of the absolute updates of a model structure is lower than a given threshold, FedSCR will treat the updates in this structure as less important and filter them out.
Methods:
__init__
(builder_base[, random_seed])train_step
(updates, cur_steps, train_steps, ...)Accept ps model params,then do local train
- train_step(updates: ndarray, cur_steps: int, train_steps: int, **kwargs) Tuple[ndarray, int] [源代码]#
Accept ps model params,then do local train
- 参数:
updates – global updates from params server
cur_steps – current train step
train_steps – local training steps
kwargs – strategy-specific parameters
- 返回:
Parameters after local training
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_scr.PYUFedSCR[源代码]#
ActorProxy(PYUFedSCR)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(updates, cur_steps, train_steps, ...)Accept ps model params,then do local train
wrap_local_metrics
()
secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_stc#
Classes:
|
FedSTC: Sparse Ternary Compression (STC), a new compression framework that is specifically designed to meet the requirements of the Federated Learning environment. |
|
- class secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_stc.FedSTC(builder_base: Callable[[], Model], random_seed=None)[源代码]#
基类:
BaseTFModel
FedSTC: Sparse Ternary Compression (STC), a new compression framework that is specifically designed to meet the requirements of the Federated Learning environment. STC applies both sparsity and binarization in both upstream (client –> server) and downstream (server –> client) communication.
Methods:
__init__
(builder_base[, random_seed])train_step
(updates, cur_steps, train_steps, ...)Accept ps model params,then do local train
- train_step(updates: ndarray, cur_steps: int, train_steps: int, **kwargs) Tuple[ndarray, int] [源代码]#
Accept ps model params,then do local train
- 参数:
updates – global updates from params server
cur_steps – current train step
train_steps – local training steps
kwargs – strategy-specific parameters
- 返回:
Parameters after local training
- secretflow.ml.nn.fl.backend.tensorflow.strategy.fed_stc.PYUFedSTC[源代码]#
ActorProxy(PYUFedSTC)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
build_dataset
(x[, y, s_w, sampling_rate, ...])build tf.data.Dataset
build_dataset_from_builder
(dataset_builder, x)build tf.data.Dataset
build_dataset_from_csv
(csv_file_path, label)build tf.data.Dataset
evaluate
([evaluate_steps])get_rows_count
(filename)get_stop_training
()get_weights
()init_training
(callbacks[, epochs, steps, ...])load_model
(model_path)on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_begin
()on_train_end
()predict
([predict_steps])save_model
(model_path)set_validation_metrics
(global_metrics)set_weights
(weights)set weights of client model
train_step
(updates, cur_steps, train_steps, ...)Accept ps model params,then do local train
wrap_local_metrics
()