secretflow.ml.nn.sl.backend.tensorflow.strategy#
Classes:
|
|
|
- secretflow.ml.nn.sl.backend.tensorflow.strategy.PYUSLAsyncTFModel[源代码]#
ActorProxy(PYUSLAsyncTFModel)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
base_backward
(gradient[, compress])backward on fusenet
base_forward
([stage, compress])compute hidden embedding :param stage: Which stage of the base forward :param compress: Whether to compress cross device data.
build_dataset_from_builder
(*x[, y, s_w, ...])build tf.data.Dataset
build_dataset_from_numeric
(*x[, y, s_w, ...])build tf.data.Dataset
evaluate
(*forward_data[, compress])Returns the loss value & metrics values for the model in test mode.
export_base_model
(model_path[, save_format])export_fuse_model
(model_path[, save_format])fuse_net
(*forward_data[, _num_returns, compress])Fuses the hidden layer and calculates the reverse gradient only on the side with the label
get_base_losses
()get_base_weights
()get_basenet_output_num
()get_fuse_weights
()get_privacy_spent
(step[, orders])Get accountant of dp mechanism.
get_skip_gradient
()get_stop_training
()init_data
()init_training
(callbacks[, epochs, steps, ...])load_base_model
(base_model_path, **kwargs)load_fuse_model
(fuse_model_path, **kwargs)metrics
()on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_batch_begin
([step])on_train_batch_end
([step])on_train_begin
()on_train_end
()on_validation
(val_logs)predict
(*forward_data[, compress])Generates output predictions for the input hidden layer features.
reset_metrics
()save_base_model
(base_model_path, **kwargs)save_fuse_model
(fuse_model_path, **kwargs)set_dataset_stage
(data_set[, stage, has_y, ...])set_sample_weight
(sample_weight[, stage])set_steps_per_epoch
(steps_per_epoch)wrap_local_metrics
()
- secretflow.ml.nn.sl.backend.tensorflow.strategy.PYUSLStateAsyncTFModel[源代码]#
ActorProxy(PYUSLStateAsyncTFModel)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
base_backward
(gradient[, compress])backward on fusenet
base_forward
([stage, compress])compute hidden embedding :param stage: Which stage of the base forward :param compress: Whether to compress cross device data.
build_dataset_from_builder
(*x[, y, s_w, ...])build tf.data.Dataset
build_dataset_from_numeric
(*x[, y, s_w, ...])build tf.data.Dataset
evaluate
(*forward_data[, compress])Returns the loss value & metrics values for the model in test mode.
export_base_model
(model_path[, save_format])export_fuse_model
(model_path[, save_format])fuse_net
(*forward_data[, _num_returns, compress])Fuses the hidden layer and calculates the reverse gradient only on the side with the label
get_base_losses
()get_base_weights
()get_basenet_output_num
()get_fuse_weights
()get_privacy_spent
(step[, orders])Get accountant of dp mechanism.
get_skip_gradient
()get_stop_training
()init_data
()init_training
(callbacks[, epochs, steps, ...])load_base_model
(base_model_path, **kwargs)load_fuse_model
(fuse_model_path, **kwargs)metrics
()on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_batch_begin
([step])on_train_batch_end
([step])on_train_begin
()on_train_end
()on_validation
(val_logs)predict
(*forward_data[, compress])Generates output predictions for the input hidden layer features.
reset_metrics
()save_base_model
(base_model_path, **kwargs)save_fuse_model
(fuse_model_path, **kwargs)set_dataset_stage
(data_set[, stage, has_y, ...])set_sample_weight
(sample_weight[, stage])set_steps_per_epoch
(steps_per_epoch)wrap_local_metrics
()
secretflow.ml.nn.sl.backend.tensorflow.strategy.split_async#
Async split learning strategy
Classes:
|
|
|
- class secretflow.ml.nn.sl.backend.tensorflow.strategy.split_async.SLAsyncTFModel(builder_base: Callable[[], Model], builder_fuse: Callable[[], Model], dp_strategy: DPStrategy, compressor: Compressor, base_local_steps: int, fuse_local_steps: int, bound_param: float, random_seed: Optional[int] = None, **kwargs)[源代码]#
-
Methods:
__init__
(builder_base, builder_fuse, ...[, ...])base_backward
(gradient[, compress])backward on fusenet
- __init__(builder_base: Callable[[], Model], builder_fuse: Callable[[], Model], dp_strategy: DPStrategy, compressor: Compressor, base_local_steps: int, fuse_local_steps: int, bound_param: float, random_seed: Optional[int] = None, **kwargs)[源代码]#
- secretflow.ml.nn.sl.backend.tensorflow.strategy.split_async.PYUSLAsyncTFModel[源代码]#
ActorProxy(PYUSLAsyncTFModel)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
base_backward
(gradient[, compress])backward on fusenet
base_forward
([stage, compress])compute hidden embedding :param stage: Which stage of the base forward :param compress: Whether to compress cross device data.
build_dataset_from_builder
(*x[, y, s_w, ...])build tf.data.Dataset
build_dataset_from_numeric
(*x[, y, s_w, ...])build tf.data.Dataset
evaluate
(*forward_data[, compress])Returns the loss value & metrics values for the model in test mode.
export_base_model
(model_path[, save_format])export_fuse_model
(model_path[, save_format])fuse_net
(*forward_data[, _num_returns, compress])Fuses the hidden layer and calculates the reverse gradient only on the side with the label
get_base_losses
()get_base_weights
()get_basenet_output_num
()get_fuse_weights
()get_privacy_spent
(step[, orders])Get accountant of dp mechanism.
get_skip_gradient
()get_stop_training
()init_data
()init_training
(callbacks[, epochs, steps, ...])load_base_model
(base_model_path, **kwargs)load_fuse_model
(fuse_model_path, **kwargs)metrics
()on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_batch_begin
([step])on_train_batch_end
([step])on_train_begin
()on_train_end
()on_validation
(val_logs)predict
(*forward_data[, compress])Generates output predictions for the input hidden layer features.
reset_metrics
()save_base_model
(base_model_path, **kwargs)save_fuse_model
(fuse_model_path, **kwargs)set_dataset_stage
(data_set[, stage, has_y, ...])set_sample_weight
(sample_weight[, stage])set_steps_per_epoch
(steps_per_epoch)wrap_local_metrics
()
secretflow.ml.nn.sl.backend.tensorflow.strategy.split_state_async#
Stateful async split learning strategy Reference:
[1] Chen, X., Li, J., & Chakrabarti, C. Communication and computation reduction for split learning using asynchronous training[C]. arXiv preprint arXiv:2107.09786, 2021.(https://arxiv.org/abs/2107.09786)
Classes:
|
|
|
- class secretflow.ml.nn.sl.backend.tensorflow.strategy.split_state_async.SLStateAsyncTFModel(builder_base: Callable[[], Model], builder_fuse: Callable[[], Model], dp_strategy: DPStrategy, compressor: Compressor, loss_thres: float = 0, split_steps: int = 1, max_fuse_local_steps: int = 1, random_seed: Optional[int] = None, **kwargs)[源代码]#
-
Methods:
__init__
(builder_base, builder_fuse, ...[, ...])- __init__(builder_base: Callable[[], Model], builder_fuse: Callable[[], Model], dp_strategy: DPStrategy, compressor: Compressor, loss_thres: float = 0, split_steps: int = 1, max_fuse_local_steps: int = 1, random_seed: Optional[int] = None, **kwargs)[源代码]#
- secretflow.ml.nn.sl.backend.tensorflow.strategy.split_state_async.PYUSLStateAsyncTFModel[源代码]#
ActorProxy(PYUSLStateAsyncTFModel)
的别名 Methods:__init__
(*args, **kwargs)Abstraction device object base class.
base_backward
(gradient[, compress])backward on fusenet
base_forward
([stage, compress])compute hidden embedding :param stage: Which stage of the base forward :param compress: Whether to compress cross device data.
build_dataset_from_builder
(*x[, y, s_w, ...])build tf.data.Dataset
build_dataset_from_numeric
(*x[, y, s_w, ...])build tf.data.Dataset
evaluate
(*forward_data[, compress])Returns the loss value & metrics values for the model in test mode.
export_base_model
(model_path[, save_format])export_fuse_model
(model_path[, save_format])fuse_net
(*forward_data[, _num_returns, compress])Fuses the hidden layer and calculates the reverse gradient only on the side with the label
get_base_losses
()get_base_weights
()get_basenet_output_num
()get_fuse_weights
()get_privacy_spent
(step[, orders])Get accountant of dp mechanism.
get_skip_gradient
()get_stop_training
()init_data
()init_training
(callbacks[, epochs, steps, ...])load_base_model
(base_model_path, **kwargs)load_fuse_model
(fuse_model_path, **kwargs)metrics
()on_epoch_begin
(epoch)on_epoch_end
(epoch)on_train_batch_begin
([step])on_train_batch_end
([step])on_train_begin
()on_train_end
()on_validation
(val_logs)predict
(*forward_data[, compress])Generates output predictions for the input hidden layer features.
reset_metrics
()save_base_model
(base_model_path, **kwargs)save_fuse_model
(fuse_model_path, **kwargs)set_dataset_stage
(data_set[, stage, has_y, ...])set_sample_weight
(sample_weight[, stage])set_steps_per_epoch
(steps_per_epoch)wrap_local_metrics
()