secretflow.ml.nn.sl.backend.tensorflow.strategy#

Classes:

PYUSLAsyncTFModel

ActorProxy(PYUSLAsyncTFModel) 的别名

PYUSLStateAsyncTFModel

ActorProxy(PYUSLStateAsyncTFModel) 的别名

secretflow.ml.nn.sl.backend.tensorflow.strategy.PYUSLAsyncTFModel[源代码]#

ActorProxy(PYUSLAsyncTFModel) 的别名 Methods:

__init__(*args, **kwargs)

Abstraction device object base class.

base_backward(gradient[, compress])

backward on fusenet

base_forward([stage, compress])

compute hidden embedding :param stage: Which stage of the base forward :param compress: Whether to compress cross device data.

build_dataset_from_builder(*x[, y, s_w, ...])

build tf.data.Dataset

build_dataset_from_numeric(*x[, y, s_w, ...])

build tf.data.Dataset

evaluate(*forward_data[, compress])

Returns the loss value & metrics values for the model in test mode.

export_base_model(model_path[, save_format])

export_fuse_model(model_path[, save_format])

fuse_net(*forward_data[, _num_returns, compress])

Fuses the hidden layer and calculates the reverse gradient only on the side with the label

get_base_losses()

get_base_weights()

get_basenet_output_num()

get_fuse_weights()

get_privacy_spent(step[, orders])

Get accountant of dp mechanism.

get_skip_gradient()

get_stop_training()

init_data()

init_training(callbacks[, epochs, steps, ...])

load_base_model(base_model_path, **kwargs)

load_fuse_model(fuse_model_path, **kwargs)

metrics()

on_epoch_begin(epoch)

on_epoch_end(epoch)

on_train_batch_begin([step])

on_train_batch_end([step])

on_train_begin()

on_train_end()

on_validation(val_logs)

predict(*forward_data[, compress])

Generates output predictions for the input hidden layer features.

reset_metrics()

save_base_model(base_model_path, **kwargs)

save_fuse_model(fuse_model_path, **kwargs)

set_dataset_stage(data_set[, stage, has_y, ...])

set_sample_weight(sample_weight[, stage])

set_steps_per_epoch(steps_per_epoch)

wrap_local_metrics()

secretflow.ml.nn.sl.backend.tensorflow.strategy.PYUSLStateAsyncTFModel[源代码]#

ActorProxy(PYUSLStateAsyncTFModel) 的别名 Methods:

__init__(*args, **kwargs)

Abstraction device object base class.

base_backward(gradient[, compress])

backward on fusenet

base_forward([stage, compress])

compute hidden embedding :param stage: Which stage of the base forward :param compress: Whether to compress cross device data.

build_dataset_from_builder(*x[, y, s_w, ...])

build tf.data.Dataset

build_dataset_from_numeric(*x[, y, s_w, ...])

build tf.data.Dataset

evaluate(*forward_data[, compress])

Returns the loss value & metrics values for the model in test mode.

export_base_model(model_path[, save_format])

export_fuse_model(model_path[, save_format])

fuse_net(*forward_data[, _num_returns, compress])

Fuses the hidden layer and calculates the reverse gradient only on the side with the label

get_base_losses()

get_base_weights()

get_basenet_output_num()

get_fuse_weights()

get_privacy_spent(step[, orders])

Get accountant of dp mechanism.

get_skip_gradient()

get_stop_training()

init_data()

init_training(callbacks[, epochs, steps, ...])

load_base_model(base_model_path, **kwargs)

load_fuse_model(fuse_model_path, **kwargs)

metrics()

on_epoch_begin(epoch)

on_epoch_end(epoch)

on_train_batch_begin([step])

on_train_batch_end([step])

on_train_begin()

on_train_end()

on_validation(val_logs)

predict(*forward_data[, compress])

Generates output predictions for the input hidden layer features.

reset_metrics()

save_base_model(base_model_path, **kwargs)

save_fuse_model(fuse_model_path, **kwargs)

set_dataset_stage(data_set[, stage, has_y, ...])

set_sample_weight(sample_weight[, stage])

set_steps_per_epoch(steps_per_epoch)

wrap_local_metrics()

secretflow.ml.nn.sl.backend.tensorflow.strategy.split_async#

Async split learning strategy

Classes:

SLAsyncTFModel(builder_base, builder_fuse, ...)

PYUSLAsyncTFModel

ActorProxy(PYUSLAsyncTFModel) 的别名

class secretflow.ml.nn.sl.backend.tensorflow.strategy.split_async.SLAsyncTFModel(builder_base: Callable[[], Model], builder_fuse: Callable[[], Model], dp_strategy: DPStrategy, compressor: Compressor, base_local_steps: int, fuse_local_steps: int, bound_param: float, random_seed: Optional[int] = None, **kwargs)[源代码]#

基类:SLBaseTFModel

Methods:

__init__(builder_base, builder_fuse, ...[, ...])

base_backward(gradient[, compress])

backward on fusenet

__init__(builder_base: Callable[[], Model], builder_fuse: Callable[[], Model], dp_strategy: DPStrategy, compressor: Compressor, base_local_steps: int, fuse_local_steps: int, bound_param: float, random_seed: Optional[int] = None, **kwargs)[源代码]#
base_backward(gradient, compress: bool = False)[源代码]#

backward on fusenet

参数:
  • gradient – gradient of fusenet hidden layer

  • compress – Whether to decompress gradient.

secretflow.ml.nn.sl.backend.tensorflow.strategy.split_async.PYUSLAsyncTFModel[源代码]#

ActorProxy(PYUSLAsyncTFModel) 的别名 Methods:

__init__(*args, **kwargs)

Abstraction device object base class.

base_backward(gradient[, compress])

backward on fusenet

base_forward([stage, compress])

compute hidden embedding :param stage: Which stage of the base forward :param compress: Whether to compress cross device data.

build_dataset_from_builder(*x[, y, s_w, ...])

build tf.data.Dataset

build_dataset_from_numeric(*x[, y, s_w, ...])

build tf.data.Dataset

evaluate(*forward_data[, compress])

Returns the loss value & metrics values for the model in test mode.

export_base_model(model_path[, save_format])

export_fuse_model(model_path[, save_format])

fuse_net(*forward_data[, _num_returns, compress])

Fuses the hidden layer and calculates the reverse gradient only on the side with the label

get_base_losses()

get_base_weights()

get_basenet_output_num()

get_fuse_weights()

get_privacy_spent(step[, orders])

Get accountant of dp mechanism.

get_skip_gradient()

get_stop_training()

init_data()

init_training(callbacks[, epochs, steps, ...])

load_base_model(base_model_path, **kwargs)

load_fuse_model(fuse_model_path, **kwargs)

metrics()

on_epoch_begin(epoch)

on_epoch_end(epoch)

on_train_batch_begin([step])

on_train_batch_end([step])

on_train_begin()

on_train_end()

on_validation(val_logs)

predict(*forward_data[, compress])

Generates output predictions for the input hidden layer features.

reset_metrics()

save_base_model(base_model_path, **kwargs)

save_fuse_model(fuse_model_path, **kwargs)

set_dataset_stage(data_set[, stage, has_y, ...])

set_sample_weight(sample_weight[, stage])

set_steps_per_epoch(steps_per_epoch)

wrap_local_metrics()

secretflow.ml.nn.sl.backend.tensorflow.strategy.split_state_async#

Stateful async split learning strategy Reference:

[1] Chen, X., Li, J., & Chakrabarti, C. Communication and computation reduction for split learning using asynchronous training[C]. arXiv preprint arXiv:2107.09786, 2021.(https://arxiv.org/abs/2107.09786)

Classes:

SLStateAsyncTFModel(builder_base, ...[, ...])

PYUSLStateAsyncTFModel

ActorProxy(PYUSLStateAsyncTFModel) 的别名

class secretflow.ml.nn.sl.backend.tensorflow.strategy.split_state_async.SLStateAsyncTFModel(builder_base: Callable[[], Model], builder_fuse: Callable[[], Model], dp_strategy: DPStrategy, compressor: Compressor, loss_thres: float = 0, split_steps: int = 1, max_fuse_local_steps: int = 1, random_seed: Optional[int] = None, **kwargs)[源代码]#

基类:SLBaseTFModel

Methods:

__init__(builder_base, builder_fuse, ...[, ...])

get_skip_gradient()

__init__(builder_base: Callable[[], Model], builder_fuse: Callable[[], Model], dp_strategy: DPStrategy, compressor: Compressor, loss_thres: float = 0, split_steps: int = 1, max_fuse_local_steps: int = 1, random_seed: Optional[int] = None, **kwargs)[源代码]#
get_skip_gradient()[源代码]#
secretflow.ml.nn.sl.backend.tensorflow.strategy.split_state_async.PYUSLStateAsyncTFModel[源代码]#

ActorProxy(PYUSLStateAsyncTFModel) 的别名 Methods:

__init__(*args, **kwargs)

Abstraction device object base class.

base_backward(gradient[, compress])

backward on fusenet

base_forward([stage, compress])

compute hidden embedding :param stage: Which stage of the base forward :param compress: Whether to compress cross device data.

build_dataset_from_builder(*x[, y, s_w, ...])

build tf.data.Dataset

build_dataset_from_numeric(*x[, y, s_w, ...])

build tf.data.Dataset

evaluate(*forward_data[, compress])

Returns the loss value & metrics values for the model in test mode.

export_base_model(model_path[, save_format])

export_fuse_model(model_path[, save_format])

fuse_net(*forward_data[, _num_returns, compress])

Fuses the hidden layer and calculates the reverse gradient only on the side with the label

get_base_losses()

get_base_weights()

get_basenet_output_num()

get_fuse_weights()

get_privacy_spent(step[, orders])

Get accountant of dp mechanism.

get_skip_gradient()

get_stop_training()

init_data()

init_training(callbacks[, epochs, steps, ...])

load_base_model(base_model_path, **kwargs)

load_fuse_model(fuse_model_path, **kwargs)

metrics()

on_epoch_begin(epoch)

on_epoch_end(epoch)

on_train_batch_begin([step])

on_train_batch_end([step])

on_train_begin()

on_train_end()

on_validation(val_logs)

predict(*forward_data[, compress])

Generates output predictions for the input hidden layer features.

reset_metrics()

save_base_model(base_model_path, **kwargs)

save_fuse_model(fuse_model_path, **kwargs)

set_dataset_stage(data_set[, stage, has_y, ...])

set_sample_weight(sample_weight[, stage])

set_steps_per_epoch(steps_per_epoch)

wrap_local_metrics()