secretflow.ml.boost.ss_xgb_v#
Classes:
|
SS Xgb Model & predict. |
|
This method provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using secret sharing. |
- class secretflow.ml.boost.ss_xgb_v.XgbModel(spu: SPU, objective: RegType, base: float)[源代码]#
基类:
object
SS Xgb Model & predict.
Methods:
__init__
(spu, objective, base)predict
(dtrain[, to_pyu])predict on dtrain with this model.
- predict(dtrain: Union[FedNdarray, VDataFrame], to_pyu: Optional[PYU] = None) Union[SPUObject, FedNdarray] [源代码]#
predict on dtrain with this model.
- 参数:
dtrain – [FedNdarray, VDataFrame] vertical split dataset.
to – the prediction initiator if not None predict result is reveal to to_pyu device and save as FedNdarray otherwise, keep predict result in secret and save as SPUObject.
- 返回:
Pred values store in spu object or FedNdarray.
- class secretflow.ml.boost.ss_xgb_v.Xgb(spu: Union[SPU, List[SPU]])[源代码]#
基类:
object
This method provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using secret sharing.
SS-XGB is short for secret sharing XGB. more details: https://arxiv.org/pdf/2005.08479.pdf
- 参数:
spu – secret device running MPC protocols
Methods:
__init__
(spu)train
(params, dtrain, label)train on dtrain and label.
- train(params: Dict, dtrain: Union[FedNdarray, VDataFrame], label: Union[FedNdarray, VDataFrame]) XgbModel [源代码]#
train on dtrain and label.
- 参数:
dtrain – {FedNdarray, VDataFrame} vertical split dataset.
label – {FedNdarray, VDataFrame} label column.
params – Dict booster params, details are as follows
booster params details:
- num_boost_roundint, default=10
Number of boosting iterations. range: [1, 1024]
- ‘max_depth’: Maximum depth of a tree.
default: 5 range: [1, 16]
- ‘learning_rate’: Step size shrinkage used in update to prevents overfitting.
default: 0.3 range: (0, 1]
- ‘objective’: Specify the learning objective.
default: ‘logistic’ range: [‘linear’, ‘logistic’]
- ‘reg_lambda’: L2 regularization term on weights.
default: 0.1 range: [0, 10000]
- ‘subsample’: Subsample ratio of the training instances.
default: 1 range: (0, 1]
- ‘colsample_bytree’: Subsample ratio of columns when constructing each tree.
default: 1 range: (0, 1]
- ‘sketch_eps’: This roughly translates into O(1 / sketch_eps) number of bins.
default: 0.1 range: (0, 1]
- ‘base_score’: The initial prediction score of all instances, global bias.
default: 0
- ‘seed’: Pseudorandom number generator seed.
default: 42
- 返回:
XgbModel
secretflow.ml.boost.ss_xgb_v.model#
Classes:
|
SS Xgb Model & predict. |
|
This method provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using secret sharing. |
- class secretflow.ml.boost.ss_xgb_v.model.XgbModel(spu: SPU, objective: RegType, base: float)[源代码]#
基类:
object
SS Xgb Model & predict.
Methods:
__init__
(spu, objective, base)predict
(dtrain[, to_pyu])predict on dtrain with this model.
- predict(dtrain: Union[FedNdarray, VDataFrame], to_pyu: Optional[PYU] = None) Union[SPUObject, FedNdarray] [源代码]#
predict on dtrain with this model.
- 参数:
dtrain – [FedNdarray, VDataFrame] vertical split dataset.
to – the prediction initiator if not None predict result is reveal to to_pyu device and save as FedNdarray otherwise, keep predict result in secret and save as SPUObject.
- 返回:
Pred values store in spu object or FedNdarray.
- class secretflow.ml.boost.ss_xgb_v.model.Xgb(spu: Union[SPU, List[SPU]])[源代码]#
基类:
object
This method provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using secret sharing.
SS-XGB is short for secret sharing XGB. more details: https://arxiv.org/pdf/2005.08479.pdf
- 参数:
spu – secret device running MPC protocols
Methods:
__init__
(spu)train
(params, dtrain, label)train on dtrain and label.
- train(params: Dict, dtrain: Union[FedNdarray, VDataFrame], label: Union[FedNdarray, VDataFrame]) XgbModel [源代码]#
train on dtrain and label.
- 参数:
dtrain – {FedNdarray, VDataFrame} vertical split dataset.
label – {FedNdarray, VDataFrame} label column.
params – Dict booster params, details are as follows
booster params details:
- num_boost_roundint, default=10
Number of boosting iterations. range: [1, 1024]
- ‘max_depth’: Maximum depth of a tree.
default: 5 range: [1, 16]
- ‘learning_rate’: Step size shrinkage used in update to prevents overfitting.
default: 0.3 range: (0, 1]
- ‘objective’: Specify the learning objective.
default: ‘logistic’ range: [‘linear’, ‘logistic’]
- ‘reg_lambda’: L2 regularization term on weights.
default: 0.1 range: [0, 10000]
- ‘subsample’: Subsample ratio of the training instances.
default: 1 range: (0, 1]
- ‘colsample_bytree’: Subsample ratio of columns when constructing each tree.
default: 1 range: (0, 1]
- ‘sketch_eps’: This roughly translates into O(1 / sketch_eps) number of bins.
default: 0.1 range: (0, 1]
- ‘base_score’: The initial prediction score of all instances, global bias.
default: 0
- ‘seed’: Pseudorandom number generator seed.
default: 42
- 返回:
XgbModel