secretflow.ml.boost.sgb_v.factory#
Classes:
You can customize your own boosting algorithms which are based on any combination of ideas of secureboost, XGB, and lightGBM. |
- class secretflow.ml.boost.sgb_v.factory.SGBFactory[源代码]#
基类:
objectYou can customize your own boosting algorithms which are based on any combination of ideas of secureboost, XGB, and lightGBM. The parameters for the produced booster algorithm depends on what components it consists of. See components’ parameters.
- params_dict#
A dict contain params for the factory, booster and its components.
- Type:
dict
- factory_params#
validated params for the factory.
- Type:
- heu#
the device for HE computations. must be set before training.
Methods:
__init__()set_params(params)Set params by a dictionary.
set_heu(heu)get_params([detailed])get the params set
fit(dataset, label)train(params, dataset, label)- get_params(detailed: bool = False) dict[源代码]#
get the params set
- 参数:
detailed (bool, optional) – If include default settings. Defaults to False.
- 返回:
current params.
- 返回类型:
dict
- fit(dataset: Union[FedNdarray, VDataFrame], label: Union[FedNdarray, VDataFrame]) SgbModel[源代码]#
- train(params: dict, dataset: Union[FedNdarray, VDataFrame], label: Union[FedNdarray, VDataFrame]) SgbModel[源代码]#
- secretflow.ml.boost.sgb_v.factory.booster
- secretflow.ml.boost.sgb_v.factory.components
OrderMapManagerGradientEncryptorSamplerLeafManagerDataPreprocessorModelBuilderLossComputerTreeTrainerNodeSelectorLevelWiseCacheShufflerBucketSumCalculatorSplitFinderSplitTreeBuilderLevelWiseTreeTrainer- secretflow.ml.boost.sgb_v.factory.components.bucket_sum_calculator
- secretflow.ml.boost.sgb_v.factory.components.cache
- secretflow.ml.boost.sgb_v.factory.components.data_preprocessor
- secretflow.ml.boost.sgb_v.factory.components.gradient_encryptor
- secretflow.ml.boost.sgb_v.factory.components.leaf_manager
- secretflow.ml.boost.sgb_v.factory.components.loss_computer
- secretflow.ml.boost.sgb_v.factory.components.model_builder
- secretflow.ml.boost.sgb_v.factory.components.node_selector
- secretflow.ml.boost.sgb_v.factory.components.order_map_manager
- secretflow.ml.boost.sgb_v.factory.components.sampler
- secretflow.ml.boost.sgb_v.factory.components.shuffler
- secretflow.ml.boost.sgb_v.factory.components.split_finder
- secretflow.ml.boost.sgb_v.factory.components.split_tree_builder
- secretflow.ml.boost.sgb_v.factory.components.tree_trainer
- secretflow.ml.boost.sgb_v.factory.components.component
secretflow.ml.boost.sgb_v.factory.factory#
Classes:
|
An enumeration. |
|
|
You can customize your own boosting algorithms which are based on any combination of ideas of secureboost, XGB, and lightGBM. |
- class secretflow.ml.boost.sgb_v.factory.factory.TreeGrowingMethod(value)[源代码]#
基类:
EnumAn enumeration.
Attributes:
- LEVEL = 'level'#
- LEAF = 'leaf'#
- class secretflow.ml.boost.sgb_v.factory.factory.SGBFactoryParams(tree_growing_method: secretflow.ml.boost.sgb_v.factory.factory.TreeGrowingMethod = <TreeGrowingMethod.LEVEL: 'level'>)[源代码]#
基类:
objectAttributes:
Methods:
__init__([tree_growing_method])- tree_growing_method: TreeGrowingMethod = 'level'#
- __init__(tree_growing_method: TreeGrowingMethod = TreeGrowingMethod.LEVEL) None#
- class secretflow.ml.boost.sgb_v.factory.factory.SGBFactory[源代码]#
基类:
objectYou can customize your own boosting algorithms which are based on any combination of ideas of secureboost, XGB, and lightGBM. The parameters for the produced booster algorithm depends on what components it consists of. See components’ parameters.
- params_dict#
A dict contain params for the factory, booster and its components.
- Type:
dict
- factory_params#
validated params for the factory.
- Type:
- heu#
the device for HE computations. must be set before training.
Methods:
__init__()set_params(params)Set params by a dictionary.
set_heu(heu)get_params([detailed])get the params set
fit(dataset, label)train(params, dataset, label)- get_params(detailed: bool = False) dict[源代码]#
get the params set
- 参数:
detailed (bool, optional) – If include default settings. Defaults to False.
- 返回:
current params.
- 返回类型:
dict
- fit(dataset: Union[FedNdarray, VDataFrame], label: Union[FedNdarray, VDataFrame]) SgbModel[源代码]#
- train(params: dict, dataset: Union[FedNdarray, VDataFrame], label: Union[FedNdarray, VDataFrame]) SgbModel[源代码]#