secretflow.ml.boost.sgb_v.core.preprocessing#
secretflow.ml.boost.sgb_v.core.preprocessing.params#
Classes:
|
An enumeration. |
|
|
|
- class secretflow.ml.boost.sgb_v.core.preprocessing.params.RegType(value)[源代码]#
基类:
Enum
An enumeration.
Attributes:
- Linear = 'linear'#
- Logistic = 'logistic'#
- class secretflow.ml.boost.sgb_v.core.preprocessing.params.LabelHolderInfo(seed: int, reg_lambda: float, gamma: float, learning_rate: float, base_score: float, sample_num: int, subsample_rate: float, obj_type: secretflow.ml.boost.sgb_v.core.preprocessing.params.RegType)[源代码]#
基类:
object
Attributes:
Methods:
__init__
(seed, reg_lambda, gamma, ...)- seed: int#
- reg_lambda: float#
- gamma: float#
- learning_rate: float#
- base_score: float#
- sample_num: int#
- subsample_rate: float#
- class secretflow.ml.boost.sgb_v.core.preprocessing.params.SGBTrainParams(num_boost_round: int, max_depth: int, learning_rate: float, objective: secretflow.ml.boost.sgb_v.core.preprocessing.params.RegType, reg_lambda: float, gamma: float, subsample: float, colsample_by_tree: float, base_score: float, sketch_eps: float, seed: int, fixed_point_parameter: int)[源代码]#
基类:
object
Attributes:
Methods:
__init__
(num_boost_round, max_depth, ...)- num_boost_round: int#
- max_depth: int#
- learning_rate: float#
- reg_lambda: float#
- gamma: float#
- subsample: float#
- colsample_by_tree: float#
- base_score: float#
- sketch_eps: float#
- seed: int#
- fixed_point_parameter: int#
secretflow.ml.boost.sgb_v.core.preprocessing.preprocessing#
Functions:
|
check data setting and get total shape. |
|
- secretflow.ml.boost.sgb_v.core.preprocessing.preprocessing.prepare_dataset(ds: Union[FedNdarray, VDataFrame]) Tuple[FedNdarray, Tuple[int, int]] [源代码]#
check data setting and get total shape.
- 参数:
ds – input dataset
- 返回:
dataset in unified type Second: shape concat all partition.
- 返回类型:
First
- secretflow.ml.boost.sgb_v.core.preprocessing.preprocessing.validate_sgb_params_dict(params: dict) SGBTrainParams [源代码]#