secretflow.ml.nn.fl.backend.torch.sampler 源代码

#!/usr/bin/env python3
# *_* coding: utf-8 *_*

# Copyright 2022 Ant Group Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import logging
import math
import random

import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset


[文档]def batch_sampler( x, y, s_w, sampling_rate, buffer_size, shuffle, repeat_count, random_seed ): """ implementation of batch sampler Args: x: feature, FedNdArray or HDataFrame y: label, FedNdArray or HDataFrame s_w: sample weight of this dataset sampling_rate: Sampling rate of a batch buffer_size: shuffle size shuffle: A bool that indicates whether the input should be shuffled repeat_count: num of repeats random_seed: Prg seed for shuffling Returns: data_set: tf.data.Dataset """ batch_size = math.floor(x.shape[0] * sampling_rate) assert batch_size > 0, "Unvalid batch size" if random_seed is not None: random.seed(random_seed) torch.manual_seed(random_seed) # set random seed for cpu torch.cuda.manual_seed(random_seed) # set random seed for cuda torch.backends.cudnn.deterministic = True data_list = [torch.Tensor((x.astype(np.float64)).copy())] if y is not None and len(y.shape) > 0: data_list.append(torch.Tensor(y.copy())) if s_w is not None and len(s_w.shape) > 0: data_list.append(torch.Tensor(s_w.copy())) dataset = TensorDataset(*data_list) dataloader = DataLoader( dataset=dataset, batch_size=batch_size, shuffle=shuffle, ) # create dataloader return dataloader
# TODO: Need to be implemented
[文档]def possion_sampler(x, y, s_w, sampling_rate, random_seed): """ implementation of possion sampler Args: x: feature, FedNdArray or HDataFrame y: label, FedNdArray or HDataFrame s_w: sample weight of this dataset sampling_rate: Sampling rate of a batch random_seed: Prg seed for shuffling Returns: dataloader: tf.data.Dataset """ raise Exception("Possion sampler is not supported yet")
[文档]def sampler_data( sampler_method="batch", x=None, y=None, s_w=None, sampling_rate=None, buffer_size=None, shuffle=False, repeat_count=1, random_seed=1234, ): """ do sample data by sampler_method Args: x: feature, FedNdArray or HDataFrame y: label, FedNdArray or HDataFrame s_w: sample weight of this dataset sampling_rate: Sampling rate of a batch buffer_size: shuffle size shuffle: A bool that indicates whether the input should be shuffled repeat_count: num of repeats random_seed: Prg seed for shuffling Returns: data_set: tf.data.Dataset """ if sampler_method == "batch": data_set = batch_sampler( x, y, s_w, sampling_rate, buffer_size, shuffle, repeat_count, random_seed ) else: logging.error(f'Unvalid sampler {sampler_method} during building local dataset') return data_set