secretflow.ml.nn.fl.backend.torch.sampler 源代码
#!/usr/bin/env python3
# *_* coding: utf-8 *_*
# Copyright 2022 Ant Group Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, TensorDataset
[文档]def batch_sampler(
x, y, s_w, sampling_rate, buffer_size, shuffle, repeat_count, random_seed
):
"""
implementation of batch sampler
Args:
x: feature, FedNdArray or HDataFrame
y: label, FedNdArray or HDataFrame
s_w: sample weight of this dataset
sampling_rate: Sampling rate of a batch
buffer_size: shuffle size
shuffle: A bool that indicates whether the input should be shuffled
repeat_count: num of repeats
random_seed: Prg seed for shuffling
Returns:
data_set: tf.data.Dataset
"""
batch_size = math.floor(x.shape[0] * sampling_rate)
assert batch_size > 0, "Unvalid batch size"
if random_seed is not None:
random.seed(random_seed)
torch.manual_seed(random_seed) # set random seed for cpu
torch.cuda.manual_seed(random_seed) # set random seed for cuda
torch.backends.cudnn.deterministic = True
data_list = [torch.Tensor((x.astype(np.float64)).copy())]
if y is not None and len(y.shape) > 0:
data_list.append(torch.Tensor(y.copy()))
if s_w is not None and len(s_w.shape) > 0:
data_list.append(torch.Tensor(s_w.copy()))
dataset = TensorDataset(*data_list)
dataloader = DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=shuffle,
) # create dataloader
return dataloader
# TODO: Need to be implemented
[文档]def possion_sampler(x, y, s_w, sampling_rate, random_seed):
"""
implementation of possion sampler
Args:
x: feature, FedNdArray or HDataFrame
y: label, FedNdArray or HDataFrame
s_w: sample weight of this dataset
sampling_rate: Sampling rate of a batch
random_seed: Prg seed for shuffling
Returns:
dataloader: tf.data.Dataset
"""
raise Exception("Possion sampler is not supported yet")
[文档]def sampler_data(
sampler_method="batch",
x=None,
y=None,
s_w=None,
sampling_rate=None,
buffer_size=None,
shuffle=False,
repeat_count=1,
random_seed=1234,
):
"""
do sample data by sampler_method
Args:
x: feature, FedNdArray or HDataFrame
y: label, FedNdArray or HDataFrame
s_w: sample weight of this dataset
sampling_rate: Sampling rate of a batch
buffer_size: shuffle size
shuffle: A bool that indicates whether the input should be shuffled
repeat_count: num of repeats
random_seed: Prg seed for shuffling
Returns:
data_set: tf.data.Dataset
"""
if sampler_method == "batch":
data_set = batch_sampler(
x, y, s_w, sampling_rate, buffer_size, shuffle, repeat_count, random_seed
)
else:
logging.error(f'Unvalid sampler {sampler_method} during building local dataset')
return data_set