secretflow.ml.boost.sgb_v.factory.booster#
Classes:
|
This class provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using level wise boost. |
- class secretflow.ml.boost.sgb_v.factory.booster.GlobalOrdermapBooster(heu: HEU, tree_trainer: TreeTrainer)[source]#
Bases:
CompositeThis class provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using level wise boost.
Methods:
__init__(heu, tree_trainer)set_params(params)get_params([params])set_devices(devices)fit(dataset, label)- __init__(heu: HEU, tree_trainer: TreeTrainer) None[source]#
- fit(dataset: Union[FedNdarray, VDataFrame], label: Union[FedNdarray, VDataFrame]) SgbModel[source]#
secretflow.ml.boost.sgb_v.factory.booster.global_ordermap_booster#
Classes:
|
params specifically belonged to global ordermap booster, not its components. |
|
This class provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using level wise boost. |
- class secretflow.ml.boost.sgb_v.factory.booster.global_ordermap_booster.GlobalOrdermapBoosterComponents(preprocessor: secretflow.ml.boost.sgb_v.factory.components.data_preprocessor.data_preprocessor.DataPreprocessor = <secretflow.ml.boost.sgb_v.factory.components.data_preprocessor.data_preprocessor.DataPreprocessor object at 0x7f47491c7c70>, order_map_manager: secretflow.ml.boost.sgb_v.factory.components.order_map_manager.order_map_manager.OrderMapManager = <secretflow.ml.boost.sgb_v.factory.components.order_map_manager.order_map_manager.OrderMapManager object at 0x7f47491d6f40>, model_builder: secretflow.ml.boost.sgb_v.factory.components.model_builder.model_builder.ModelBuilder = <secretflow.ml.boost.sgb_v.factory.components.model_builder.model_builder.ModelBuilder object at 0x7f47491bcaf0>)[source]#
Bases:
objectAttributes:
Methods:
__init__([preprocessor, order_map_manager, ...])- preprocessor: DataPreprocessor = <secretflow.ml.boost.sgb_v.factory.components.data_preprocessor.data_preprocessor.DataPreprocessor object>#
- order_map_manager: OrderMapManager = <secretflow.ml.boost.sgb_v.factory.components.order_map_manager.order_map_manager.OrderMapManager object>#
- model_builder: ModelBuilder = <secretflow.ml.boost.sgb_v.factory.components.model_builder.model_builder.ModelBuilder object>#
- __init__(preprocessor: ~secretflow.ml.boost.sgb_v.factory.components.data_preprocessor.data_preprocessor.DataPreprocessor = <secretflow.ml.boost.sgb_v.factory.components.data_preprocessor.data_preprocessor.DataPreprocessor object>, order_map_manager: ~secretflow.ml.boost.sgb_v.factory.components.order_map_manager.order_map_manager.OrderMapManager = <secretflow.ml.boost.sgb_v.factory.components.order_map_manager.order_map_manager.OrderMapManager object>, model_builder: ~secretflow.ml.boost.sgb_v.factory.components.model_builder.model_builder.ModelBuilder = <secretflow.ml.boost.sgb_v.factory.components.model_builder.model_builder.ModelBuilder object>) None#
- class secretflow.ml.boost.sgb_v.factory.booster.global_ordermap_booster.GlobalOrdermapBoosterParams(num_boost_round: int = 10)[source]#
Bases:
objectparams specifically belonged to global ordermap booster, not its components.
- num_boost_roundint, default=10
Number of boosting iterations. Same as number of trees. range: [1, 1024]
Attributes:
Methods:
__init__([num_boost_round])- num_boost_round: int = 10#
- __init__(num_boost_round: int = 10) None#
- class secretflow.ml.boost.sgb_v.factory.booster.global_ordermap_booster.GlobalOrdermapBooster(heu: HEU, tree_trainer: TreeTrainer)[source]#
Bases:
CompositeThis class provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using level wise boost.
Methods:
__init__(heu, tree_trainer)set_params(params)get_params([params])set_devices(devices)fit(dataset, label)- __init__(heu: HEU, tree_trainer: TreeTrainer) None[source]#
- fit(dataset: Union[FedNdarray, VDataFrame], label: Union[FedNdarray, VDataFrame]) SgbModel[source]#