secretflow.ml.boost.sgb_v.factory.booster#

Classes:

GlobalOrdermapBooster(heu, tree_trainer)

This class provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using level wise boost.

class secretflow.ml.boost.sgb_v.factory.booster.GlobalOrdermapBooster(heu: HEU, tree_trainer: TreeTrainer)[source]#

Bases: Composite

This class provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using level wise boost.

Methods:

__init__(heu, tree_trainer)

show_params()

set_params(params)

get_params([params])

set_devices(devices)

fit(dataset, label)

__init__(heu: HEU, tree_trainer: TreeTrainer) None[source]#
show_params()[source]#
set_params(params: dict)[source]#
get_params(params: dict = {}) dict[source]#
set_devices(devices: Devices)[source]#
fit(dataset: Union[FedNdarray, VDataFrame], label: Union[FedNdarray, VDataFrame]) SgbModel[source]#

secretflow.ml.boost.sgb_v.factory.booster.global_ordermap_booster#

Classes:

GlobalOrdermapBoosterComponents(...)

GlobalOrdermapBoosterParams([num_boost_round])

params specifically belonged to global ordermap booster, not its components.

GlobalOrdermapBooster(heu, tree_trainer)

This class provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using level wise boost.

class secretflow.ml.boost.sgb_v.factory.booster.global_ordermap_booster.GlobalOrdermapBoosterComponents(preprocessor: secretflow.ml.boost.sgb_v.factory.components.data_preprocessor.data_preprocessor.DataPreprocessor = <secretflow.ml.boost.sgb_v.factory.components.data_preprocessor.data_preprocessor.DataPreprocessor object at 0x7f47491c7c70>, order_map_manager: secretflow.ml.boost.sgb_v.factory.components.order_map_manager.order_map_manager.OrderMapManager = <secretflow.ml.boost.sgb_v.factory.components.order_map_manager.order_map_manager.OrderMapManager object at 0x7f47491d6f40>, model_builder: secretflow.ml.boost.sgb_v.factory.components.model_builder.model_builder.ModelBuilder = <secretflow.ml.boost.sgb_v.factory.components.model_builder.model_builder.ModelBuilder object at 0x7f47491bcaf0>)[source]#

Bases: object

Attributes:

preprocessor

order_map_manager

model_builder

Methods:

__init__([preprocessor, order_map_manager, ...])

preprocessor: DataPreprocessor = <secretflow.ml.boost.sgb_v.factory.components.data_preprocessor.data_preprocessor.DataPreprocessor object>#
order_map_manager: OrderMapManager = <secretflow.ml.boost.sgb_v.factory.components.order_map_manager.order_map_manager.OrderMapManager object>#
model_builder: ModelBuilder = <secretflow.ml.boost.sgb_v.factory.components.model_builder.model_builder.ModelBuilder object>#
__init__(preprocessor: ~secretflow.ml.boost.sgb_v.factory.components.data_preprocessor.data_preprocessor.DataPreprocessor = <secretflow.ml.boost.sgb_v.factory.components.data_preprocessor.data_preprocessor.DataPreprocessor object>, order_map_manager: ~secretflow.ml.boost.sgb_v.factory.components.order_map_manager.order_map_manager.OrderMapManager = <secretflow.ml.boost.sgb_v.factory.components.order_map_manager.order_map_manager.OrderMapManager object>, model_builder: ~secretflow.ml.boost.sgb_v.factory.components.model_builder.model_builder.ModelBuilder = <secretflow.ml.boost.sgb_v.factory.components.model_builder.model_builder.ModelBuilder object>) None#
class secretflow.ml.boost.sgb_v.factory.booster.global_ordermap_booster.GlobalOrdermapBoosterParams(num_boost_round: int = 10)[source]#

Bases: object

params specifically belonged to global ordermap booster, not its components.

num_boost_roundint, default=10

Number of boosting iterations. Same as number of trees. range: [1, 1024]

Attributes:

num_boost_round

Methods:

__init__([num_boost_round])

num_boost_round: int = 10#
__init__(num_boost_round: int = 10) None#
class secretflow.ml.boost.sgb_v.factory.booster.global_ordermap_booster.GlobalOrdermapBooster(heu: HEU, tree_trainer: TreeTrainer)[source]#

Bases: Composite

This class provides both classification and regression tree boosting (also known as GBDT, GBM) for vertical split dataset setting by using level wise boost.

Methods:

__init__(heu, tree_trainer)

show_params()

set_params(params)

get_params([params])

set_devices(devices)

fit(dataset, label)

__init__(heu: HEU, tree_trainer: TreeTrainer) None[source]#
show_params()[source]#
set_params(params: dict)[source]#
get_params(params: dict = {}) dict[source]#
set_devices(devices: Devices)[source]#
fit(dataset: Union[FedNdarray, VDataFrame], label: Union[FedNdarray, VDataFrame]) SgbModel[source]#