Numpy 模块#
小技巧
请使用 from heu import numpy as hnp 引入 phe 模块
a numpy adapter for phe module which provides numpy-like api
- class heu.numpy.CiphertextArray#
- property cols#
Get the number of cols
- property ndim#
The array’s number of dimensions
- property rows#
Get the number of rows
- property shape#
The array’s shape
- property size#
Number of elements in the array
- transpose(self: heu.numpy.CiphertextArray) heu.numpy.CiphertextArray#
Transpose the array
- class heu.numpy.Decryptor#
- decrypt(*args, **kwargs)#
Overloaded function.
decrypt(self: heu.numpy.Decryptor, ciphertext: heu.phe.Ciphertext) -> heu.phe.Plaintext
Decrypt ciphertext (scalar) to plaintext (scalar)
decrypt(self: heu.numpy.Decryptor, ciphertext_array: heu.numpy.CiphertextArray) -> heu.numpy.PlaintextArray
Decrypt ciphertext array to plaintext array
- property phe#
- class heu.numpy.DestinationHeKit#
- array(*args, **kwargs)#
Overloaded function.
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder_params: heu.phe.BigintEncoderParams = BigintEncoderParams()) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBigintEncoderParams
array(self: heu.phe.HeKitPublicBase, object: object, encoder_params: heu.phe.BigintEncoderParams = BigintEncoderParams()) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBigintEncoderParams
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder: heu.phe.BigintEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBigintEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, object: object, encoder: heu.phe.BigintEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBigintEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder_params: heu.phe.IntegerEncoderParams) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyIntegerEncoderParams
array(self: heu.phe.HeKitPublicBase, object: object, encoder_params: heu.phe.IntegerEncoderParams) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyIntegerEncoderParams
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder: heu.phe.IntegerEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyIntegerEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, object: object, encoder: heu.phe.IntegerEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyIntegerEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder_params: heu.phe.FloatEncoderParams) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyFloatEncoderParams
array(self: heu.phe.HeKitPublicBase, object: object, encoder_params: heu.phe.FloatEncoderParams) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyFloatEncoderParams
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder: heu.phe.FloatEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyFloatEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, object: object, encoder: heu.phe.FloatEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyFloatEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder_params: heu.phe.BatchIntegerEncoderParams) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBatchIntegerEncoderParams
array(self: heu.phe.HeKitPublicBase, object: object, encoder_params: heu.phe.BatchIntegerEncoderParams) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBatchIntegerEncoderParams
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder: heu.phe.BatchIntegerEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBatchIntegerEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, object: object, encoder: heu.phe.BatchIntegerEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBatchIntegerEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder_params: heu.phe.BatchFloatEncoderParams) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBatchFloatEncoderParams
array(self: heu.phe.HeKitPublicBase, object: object, encoder_params: heu.phe.BatchFloatEncoderParams) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBatchFloatEncoderParams
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder: heu.phe.BatchFloatEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBatchFloatEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, object: object, encoder: heu.phe.BatchFloatEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBatchFloatEncoder, same with hnp.array()
- encryptor(self: heu.numpy.DestinationHeKit) heu::lib::numpy::Encryptor#
Get encryptor
- evaluator(self: heu.numpy.DestinationHeKit) heu::lib::numpy::Evaluator#
Get evaluator
- class heu.numpy.Encryptor#
- encrypt(*args, **kwargs)#
Overloaded function.
encrypt(self: heu.numpy.Encryptor, plaintext: heu.phe.Plaintext) -> heu.phe.Ciphertext
Encrypt plaintext (scalar) to ciphertext (scalar)
encrypt(self: heu.numpy.Encryptor, plaintext_array: heu.numpy.PlaintextArray) -> heu.numpy.CiphertextArray
Encrypt plaintext array to ciphertext array
- encrypt_with_audit(self: heu.numpy.Encryptor, arg0: heu.numpy.PlaintextArray) Tuple[heu.numpy.CiphertextArray, heu.numpy.StringArray]#
Encrypt and build audit string including plaintext/random/ciphertext info
- property phe#
Get the instance of phe.Encryptor for scalar encryption
- class heu.numpy.Evaluator#
- add(*args, **kwargs)#
Overloaded function.
add(self: heu.numpy.Evaluator, arg0: heu.numpy.CiphertextArray, arg1: heu.numpy.CiphertextArray) -> heu.numpy.CiphertextArray
add(self: heu.numpy.Evaluator, arg0: heu.numpy.CiphertextArray, arg1: heu.numpy.PlaintextArray) -> heu.numpy.CiphertextArray
add(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: heu.numpy.CiphertextArray) -> heu.numpy.CiphertextArray
add(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: heu.numpy.PlaintextArray) -> heu.numpy.PlaintextArray
- batch_feature_wise_bucket_sum(*args, **kwargs)#
Overloaded function.
batch_feature_wise_bucket_sum(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: List[numpy.ndarray[numpy.int8[1, n]]], arg2: numpy.ndarray[numpy.int8[m, n], flags.c_contiguous], arg3: int, arg4: bool) -> List[heu.numpy.PlaintextArray]
Take elements in x according to order_map to caculate the row sum at each bin for each subgroup (Plaintext) e heu numpy evaluator x dense matrix, rows are elements of bin sum subgroup_map a list of 1d py np ndarray (vector) acts as filters. Its length should be equal to x.rows(), elements should be 0 or 1, with 1 indicates in this subgroup. order_map a 2d py ndarray. It has shape x.rows() * number of features.order_map(i, j) = k means row i feature j should be in bin k of feature j. bucket_num int. The number of buckets for each bin. cumsum bool. If apply cumulative sum to buckets for each feature. return list of dense matrix<T>, the row bin sum results. Each element has shape (bucket_num * feature_num, x.cols()).
batch_feature_wise_bucket_sum(self: heu.numpy.Evaluator, arg0: heu.numpy.CiphertextArray, arg1: List[numpy.ndarray[numpy.int8[1, n]]], arg2: numpy.ndarray[numpy.int8[m, n], flags.c_contiguous], arg3: int, arg4: bool) -> List[heu.numpy.CiphertextArray]
Take elements in x according to order_map to caculate the row sum at each bin for each subgroup (Ciphertext) e heu numpy evaluator x dense matrix, rows are elements of bin sum subgroup_map a list of 1d py np ndarray (vector) acts as filters. Its length should be equal to x.rows(), elements should be 0 or 1, with 1 indicates in this subgroup. order_map a 2d py ndarray. It has shape x.rows() * number of features.order_map(i, j) = k means row i feature j should be in bin k of feature j. bucket_num int. The number of buckets for each bin. cumsum bool. If apply cumulative sum to buckets for each feature. return list of dense matrix<T>, the row bin sum results. Each element has shape (bucket_num * feature_num, x.cols()).
- batch_select_sum(*args, **kwargs)#
Overloaded function.
batch_select_sum(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: List[object]) -> heu.numpy.PlaintextArray
Compute an array of sum of selected elements (Plaintext), equivalent to [x[indices].sum() for indices in indices_list] but faster.
batch_select_sum(self: heu.numpy.Evaluator, arg0: heu.numpy.CiphertextArray, arg1: List[object]) -> heu.numpy.CiphertextArray
Compute an array of sum of selected elements (Ciphertext), equivalent to [x[indices].sum() for indices in indices_list] but faster.
- feature_wise_bucket_sum(*args, **kwargs)#
Overloaded function.
feature_wise_bucket_sum(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: numpy.ndarray[numpy.int8[1, n]], arg2: numpy.ndarray[numpy.int8[m, n], flags.c_contiguous], arg3: int, arg4: bool) -> heu.numpy.PlaintextArray
Take elements in x according to order_map to caculate the row sum at each bin. (Plaintext) e heu numpy evaluator x dense matrix, rows are elements of bin sum subgroup_map a 1d py np ndarray (vector) acts as a filter. Its length should be equal to x.rows(), elements should be 0 or 1, with 1 indicates in this subgroup. order_map a 2d py ndarray. It has shape x.rows() * number of features.order_map(i, j) = k means row i feature j should be in bin k of feature j. bucket_num int. The number of buckets for each bin. cumsum bool. If apply cumulative sum to buckets for each feature. return dense matrix<T>, the row bin sum result. It has shape (bucket_num * feature_num, x.cols()).
feature_wise_bucket_sum(self: heu.numpy.Evaluator, arg0: heu.numpy.CiphertextArray, arg1: numpy.ndarray[numpy.int8[1, n]], arg2: numpy.ndarray[numpy.int8[m, n], flags.c_contiguous], arg3: int, arg4: bool) -> heu.numpy.CiphertextArray
Take elements in x according to order_map to caculate the row sum at each bin. (Ciphertext) e heu numpy evaluator x dense matrix, rows are elements of bin sum subgroup_map a 1d py np ndarray (vector) acts as a filter. Its length should be equal to x.rows(), elements should be 0 or 1, with 1 indicates in this subgroup. order_map a 2d py ndarray. It has shape x.rows() * number of features.order_map(i, j) = k means row i feature j should be in bin k of feature j. bucket_num int. The number of buckets for each bin. cumsum bool. If apply cumulative sum to buckets for each feature. return dense matrix<T>, the row bin sum result. It has shape (bucket_num * feature_num, x.cols()).
- matmul(*args, **kwargs)#
Overloaded function.
matmul(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: heu.numpy.PlaintextArray) -> heu.numpy.PlaintextArray
matmul(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: heu.numpy.CiphertextArray) -> heu.numpy.CiphertextArray
matmul(self: heu.numpy.Evaluator, arg0: heu.numpy.CiphertextArray, arg1: heu.numpy.PlaintextArray) -> heu.numpy.CiphertextArray
- mul(*args, **kwargs)#
Overloaded function.
mul(self: heu.numpy.Evaluator, arg0: heu.numpy.CiphertextArray, arg1: heu.numpy.PlaintextArray) -> heu.numpy.CiphertextArray
mul(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: heu.numpy.CiphertextArray) -> heu.numpy.CiphertextArray
mul(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: heu.numpy.PlaintextArray) -> heu.numpy.PlaintextArray
- property phe#
- select_sum(*args, **kwargs)#
Overloaded function.
select_sum(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: object) -> heu.phe.Plaintext
Compute the sum of selected elements (Plaintext), equivalent to x[indices].sum() but faster.
select_sum(self: heu.numpy.Evaluator, arg0: heu.numpy.CiphertextArray, arg1: object) -> heu.phe.Ciphertext
Compute the sum of selected elements (Ciphertext), equivalent to x[indices].sum() but faster.
- sub(*args, **kwargs)#
Overloaded function.
sub(self: heu.numpy.Evaluator, arg0: heu.numpy.CiphertextArray, arg1: heu.numpy.CiphertextArray) -> heu.numpy.CiphertextArray
sub(self: heu.numpy.Evaluator, arg0: heu.numpy.CiphertextArray, arg1: heu.numpy.PlaintextArray) -> heu.numpy.CiphertextArray
sub(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: heu.numpy.CiphertextArray) -> heu.numpy.CiphertextArray
sub(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray, arg1: heu.numpy.PlaintextArray) -> heu.numpy.PlaintextArray
- sum(*args, **kwargs)#
Overloaded function.
sum(self: heu.numpy.Evaluator, arg0: heu.numpy.PlaintextArray) -> heu.phe.Plaintext
sum(self: heu.numpy.Evaluator, arg0: heu.numpy.CiphertextArray) -> heu.phe.Ciphertext
- class heu.numpy.HeKit#
- array(*args, **kwargs)#
Overloaded function.
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder_params: heu.phe.BigintEncoderParams = BigintEncoderParams()) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBigintEncoderParams
array(self: heu.phe.HeKitPublicBase, object: object, encoder_params: heu.phe.BigintEncoderParams = BigintEncoderParams()) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBigintEncoderParams
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder: heu.phe.BigintEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBigintEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, object: object, encoder: heu.phe.BigintEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBigintEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder_params: heu.phe.IntegerEncoderParams) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyIntegerEncoderParams
array(self: heu.phe.HeKitPublicBase, object: object, encoder_params: heu.phe.IntegerEncoderParams) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyIntegerEncoderParams
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder: heu.phe.IntegerEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyIntegerEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, object: object, encoder: heu.phe.IntegerEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyIntegerEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder_params: heu.phe.FloatEncoderParams) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyFloatEncoderParams
array(self: heu.phe.HeKitPublicBase, object: object, encoder_params: heu.phe.FloatEncoderParams) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyFloatEncoderParams
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder: heu.phe.FloatEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyFloatEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, object: object, encoder: heu.phe.FloatEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyFloatEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder_params: heu.phe.BatchIntegerEncoderParams) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBatchIntegerEncoderParams
array(self: heu.phe.HeKitPublicBase, object: object, encoder_params: heu.phe.BatchIntegerEncoderParams) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBatchIntegerEncoderParams
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder: heu.phe.BatchIntegerEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBatchIntegerEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, object: object, encoder: heu.phe.BatchIntegerEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBatchIntegerEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder_params: heu.phe.BatchFloatEncoderParams) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBatchFloatEncoderParams
array(self: heu.phe.HeKitPublicBase, object: object, encoder_params: heu.phe.BatchFloatEncoderParams) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBatchFloatEncoderParams
array(self: heu.phe.HeKitPublicBase, ndarray: numpy.ndarray, encoder: heu.phe.BatchFloatEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBatchFloatEncoder, same with hnp.array()
array(self: heu.phe.HeKitPublicBase, object: object, encoder: heu.phe.BatchFloatEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBatchFloatEncoder, same with hnp.array()
- decryptor(self: heu.numpy.HeKit) heu::lib::numpy::Decryptor#
Get decryptor
- encryptor(self: heu.numpy.HeKit) heu::lib::numpy::Encryptor#
Get encryptor
- evaluator(self: heu.numpy.HeKit) heu::lib::numpy::Evaluator#
Get evaluator
- class heu.numpy.PlaintextArray#
- property cols#
Get the number of cols
- property ndim#
The array’s number of dimensions
- property rows#
Get the number of rows
- property shape#
The array’s shape
- property size#
Number of elements in the array
- to_bytes(self: heu.numpy.PlaintextArray, bytes_per_int: int, endian: str) bytes#
Construct Python bytes containing the raw data bytes in the array.
The endian argument determines the byte order used to represent an integer. To request the native byte order of the host system, use sys.byteorder as the byte order value.
- to_numpy(*args, **kwargs)#
Overloaded function.
to_numpy(self: heu.numpy.PlaintextArray, encoder: heu.phe.BigintDecoder = BigintDecoder()) -> numpy.ndarray
Decode plaintext array to numpy ndarray with type ‘object’
to_numpy(self: heu.numpy.PlaintextArray, encoder: heu.phe.IntegerEncoder) -> numpy.ndarray
Decode plaintext array to numpy ndarray with type ‘int64’
to_numpy(self: heu.numpy.PlaintextArray, encoder: heu.phe.FloatEncoder) -> numpy.ndarray
Decode plaintext array to numpy ndarray with type ‘float64’
to_numpy(self: heu.numpy.PlaintextArray, encoder: heu.phe.BatchIntegerEncoder) -> numpy.ndarray
Decode plaintext array to numpy ndarray with type ‘int64’
to_numpy(self: heu.numpy.PlaintextArray, encoder: heu.phe.BatchFloatEncoder) -> numpy.ndarray
Decode plaintext array to numpy ndarray with type ‘float64’
- transpose(self: heu.numpy.PlaintextArray) heu.numpy.PlaintextArray#
Transpose the array
- class heu.numpy.Shape#
- class heu.numpy.StringArray#
- property cols#
Get the number of cols
- property ndim#
The array’s number of dimensions
- property rows#
Get the number of rows
- property shape#
The array’s shape
- property size#
Number of elements in the array
- transpose(self: heu.numpy.StringArray) heu.numpy.StringArray#
Transpose the array
- heu.numpy.array(*args, **kwargs)#
Overloaded function.
array(ndarray: numpy.ndarray, encoder: heu.phe.BigintEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBigintEncoder
array(object: object, encoder: heu.phe.BigintEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBigintEncoder
array(ndarray: numpy.ndarray, encoder: heu.phe.IntegerEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyIntegerEncoder
array(object: object, encoder: heu.phe.IntegerEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyIntegerEncoder
array(ndarray: numpy.ndarray, encoder: heu.phe.FloatEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyFloatEncoder
array(object: object, encoder: heu.phe.FloatEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyFloatEncoder
array(ndarray: numpy.ndarray, encoder: heu.phe.BatchIntegerEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBatchIntegerEncoder
array(object: object, encoder: heu.phe.BatchIntegerEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBatchIntegerEncoder
array(ndarray: numpy.ndarray, encoder: heu.phe.BatchFloatEncoder) -> heu.numpy.PlaintextArray
Create and encode an array using heu::pylib::PyBatchFloatEncoder
array(object: object, encoder: heu.phe.BatchFloatEncoder) -> heu.numpy.PlaintextArray
Encode a numpy ndarray using heu::pylib::PyBatchFloatEncoder
- class heu.numpy.random#
- static randbits(schema: heu.phe.SchemaType, bits: int, shape: heu.numpy.Shape) heu.numpy.PlaintextArray#
Return a random integer array where each element is ‘bits’ bits long
- static randint(min: heu.phe.Plaintext, max: heu.phe.Plaintext, shape: heu.numpy.Shape) heu.numpy.PlaintextArray#
Return a random integer array from the “discrete uniform” distribution in interval [min, max)
- heu.numpy.setup(*args, **kwargs)#
Overloaded function.
setup(schema_type: heu.phe.SchemaType = <SchemaType.ZPaillier: 3>, key_size: int = 2048) -> heu.numpy.HeKit
Setup phe (numpy) environment by schema type and key size
setup(schema_string: str = ‘z-paillier’, key_size: int = 2048) -> heu.numpy.HeKit
Setup phe (numpy) environment by schema string and key size
setup(public_key: heu.phe.PublicKey) -> heu.numpy.DestinationHeKit
Setup phe (numpy) environment by an already generated public key
- heu.numpy.tree_predict(arg0: numpy.ndarray[numpy.float64[m, n], flags.c_contiguous], arg1: List[int], arg2: List[float]) numpy.ndarray[numpy.int8[m, n]]#
Compute tree predict based on split features and points.